comparison DPF-Prymula-audioplugins/dpf/dgl/src/nanovg/nanovg.h @ 3:84e66ea83026

DPF-Prymula-audioplugins-0.231015-2
author prymula <prymula76@outlook.com>
date Mon, 16 Oct 2023 21:53:34 +0200
parents
children
comparison
equal deleted inserted replaced
2:cf2cb71d31dd 3:84e66ea83026
1 //
2 // Copyright (c) 2013 Mikko Mononen memon@inside.org
3 //
4 // This software is provided 'as-is', without any express or implied
5 // warranty. In no event will the authors be held liable for any damages
6 // arising from the use of this software.
7 // Permission is granted to anyone to use this software for any purpose,
8 // including commercial applications, and to alter it and redistribute it
9 // freely, subject to the following restrictions:
10 // 1. The origin of this software must not be misrepresented; you must not
11 // claim that you wrote the original software. If you use this software
12 // in a product, an acknowledgment in the product documentation would be
13 // appreciated but is not required.
14 // 2. Altered source versions must be plainly marked as such, and must not be
15 // misrepresented as being the original software.
16 // 3. This notice may not be removed or altered from any source distribution.
17 //
18
19 #ifndef NANOVG_H
20 #define NANOVG_H
21
22 #ifdef __cplusplus
23 extern "C" {
24 #endif
25
26 #define NVG_PI 3.14159265358979323846264338327f
27
28 #ifdef _MSC_VER
29 #pragma warning(push)
30 #pragma warning(disable: 4201) // nonstandard extension used : nameless struct/union
31 #endif
32
33 typedef struct NVGcontext NVGcontext;
34
35 struct NVGcolor {
36 union {
37 float rgba[4];
38 struct {
39 float r,g,b,a;
40 };
41 };
42 };
43 typedef struct NVGcolor NVGcolor;
44
45 struct NVGpaint {
46 float xform[6];
47 float extent[2];
48 float radius;
49 float feather;
50 NVGcolor innerColor;
51 NVGcolor outerColor;
52 int image;
53 };
54 typedef struct NVGpaint NVGpaint;
55
56 enum NVGwinding {
57 NVG_CCW = 1, // Winding for solid shapes
58 NVG_CW = 2, // Winding for holes
59 };
60
61 enum NVGsolidity {
62 NVG_SOLID = 1, // CCW
63 NVG_HOLE = 2, // CW
64 };
65
66 enum NVGlineCap {
67 NVG_BUTT,
68 NVG_ROUND,
69 NVG_SQUARE,
70 NVG_BEVEL,
71 NVG_MITER,
72 };
73
74 enum NVGalign {
75 // Horizontal align
76 NVG_ALIGN_LEFT = 1<<0, // Default, align text horizontally to left.
77 NVG_ALIGN_CENTER = 1<<1, // Align text horizontally to center.
78 NVG_ALIGN_RIGHT = 1<<2, // Align text horizontally to right.
79 // Vertical align
80 NVG_ALIGN_TOP = 1<<3, // Align text vertically to top.
81 NVG_ALIGN_MIDDLE = 1<<4, // Align text vertically to middle.
82 NVG_ALIGN_BOTTOM = 1<<5, // Align text vertically to bottom.
83 NVG_ALIGN_BASELINE = 1<<6, // Default, align text vertically to baseline.
84 };
85
86 enum NVGblendFactor {
87 NVG_ZERO = 1<<0,
88 NVG_ONE = 1<<1,
89 NVG_SRC_COLOR = 1<<2,
90 NVG_ONE_MINUS_SRC_COLOR = 1<<3,
91 NVG_DST_COLOR = 1<<4,
92 NVG_ONE_MINUS_DST_COLOR = 1<<5,
93 NVG_SRC_ALPHA = 1<<6,
94 NVG_ONE_MINUS_SRC_ALPHA = 1<<7,
95 NVG_DST_ALPHA = 1<<8,
96 NVG_ONE_MINUS_DST_ALPHA = 1<<9,
97 NVG_SRC_ALPHA_SATURATE = 1<<10,
98 };
99
100 enum NVGcompositeOperation {
101 NVG_SOURCE_OVER,
102 NVG_SOURCE_IN,
103 NVG_SOURCE_OUT,
104 NVG_ATOP,
105 NVG_DESTINATION_OVER,
106 NVG_DESTINATION_IN,
107 NVG_DESTINATION_OUT,
108 NVG_DESTINATION_ATOP,
109 NVG_LIGHTER,
110 NVG_COPY,
111 NVG_XOR,
112 };
113
114 struct NVGcompositeOperationState {
115 int srcRGB;
116 int dstRGB;
117 int srcAlpha;
118 int dstAlpha;
119 };
120 typedef struct NVGcompositeOperationState NVGcompositeOperationState;
121
122 struct NVGglyphPosition {
123 const char* str; // Position of the glyph in the input string.
124 float x; // The x-coordinate of the logical glyph position.
125 float minx, maxx; // The bounds of the glyph shape.
126 };
127 typedef struct NVGglyphPosition NVGglyphPosition;
128
129 struct NVGtextRow {
130 const char* start; // Pointer to the input text where the row starts.
131 const char* end; // Pointer to the input text where the row ends (one past the last character).
132 const char* next; // Pointer to the beginning of the next row.
133 float width; // Logical width of the row.
134 float minx, maxx; // Actual bounds of the row. Logical with and bounds can differ because of kerning and some parts over extending.
135 };
136 typedef struct NVGtextRow NVGtextRow;
137
138 enum NVGimageFlags {
139 NVG_IMAGE_GENERATE_MIPMAPS = 1<<0, // Generate mipmaps during creation of the image.
140 NVG_IMAGE_REPEATX = 1<<1, // Repeat image in X direction.
141 NVG_IMAGE_REPEATY = 1<<2, // Repeat image in Y direction.
142 NVG_IMAGE_FLIPY = 1<<3, // Flips (inverses) image in Y direction when rendered.
143 NVG_IMAGE_PREMULTIPLIED = 1<<4, // Image data has premultiplied alpha.
144 NVG_IMAGE_NEAREST = 1<<5, // Image interpolation is Nearest instead Linear
145 };
146
147 enum NVGtexture {
148 NVG_TEXTURE_ALPHA,
149 NVG_TEXTURE_BGR,
150 NVG_TEXTURE_BGRA,
151 NVG_TEXTURE_RGB,
152 NVG_TEXTURE_RGBA,
153 };
154
155 // Begin drawing a new frame
156 // Calls to nanovg drawing API should be wrapped in nvgBeginFrame() & nvgEndFrame()
157 // nvgBeginFrame() defines the size of the window to render to in relation currently
158 // set viewport (i.e. glViewport on GL backends). Device pixel ration allows to
159 // control the rendering on Hi-DPI devices.
160 // For example, GLFW returns two dimension for an opened window: window size and
161 // frame buffer size. In that case you would set windowWidth/Height to the window size
162 // devicePixelRatio to: frameBufferWidth / windowWidth.
163 void nvgBeginFrame(NVGcontext* ctx, float windowWidth, float windowHeight, float devicePixelRatio);
164
165 // Cancels drawing the current frame.
166 void nvgCancelFrame(NVGcontext* ctx);
167
168 // Ends drawing flushing remaining render state.
169 void nvgEndFrame(NVGcontext* ctx);
170
171 //
172 // Composite operation
173 //
174 // The composite operations in NanoVG are modeled after HTML Canvas API, and
175 // the blend func is based on OpenGL (see corresponding manuals for more info).
176 // The colors in the blending state have premultiplied alpha.
177
178 // Sets the composite operation. The op parameter should be one of NVGcompositeOperation.
179 void nvgGlobalCompositeOperation(NVGcontext* ctx, int op);
180
181 // Sets the composite operation with custom pixel arithmetic. The parameters should be one of NVGblendFactor.
182 void nvgGlobalCompositeBlendFunc(NVGcontext* ctx, int sfactor, int dfactor);
183
184 // Sets the composite operation with custom pixel arithmetic for RGB and alpha components separately. The parameters should be one of NVGblendFactor.
185 void nvgGlobalCompositeBlendFuncSeparate(NVGcontext* ctx, int srcRGB, int dstRGB, int srcAlpha, int dstAlpha);
186
187 //
188 // Color utils
189 //
190 // Colors in NanoVG are stored as unsigned ints in ABGR format.
191
192 // Returns a color value from red, green, blue values. Alpha will be set to 255 (1.0f).
193 NVGcolor nvgRGB(unsigned char r, unsigned char g, unsigned char b);
194
195 // Returns a color value from red, green, blue values. Alpha will be set to 1.0f.
196 NVGcolor nvgRGBf(float r, float g, float b);
197
198
199 // Returns a color value from red, green, blue and alpha values.
200 NVGcolor nvgRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a);
201
202 // Returns a color value from red, green, blue and alpha values.
203 NVGcolor nvgRGBAf(float r, float g, float b, float a);
204
205
206 // Linearly interpolates from color c0 to c1, and returns resulting color value.
207 NVGcolor nvgLerpRGBA(NVGcolor c0, NVGcolor c1, float u);
208
209 // Sets transparency of a color value.
210 NVGcolor nvgTransRGBA(NVGcolor c0, unsigned char a);
211
212 // Sets transparency of a color value.
213 NVGcolor nvgTransRGBAf(NVGcolor c0, float a);
214
215 // Returns color value specified by hue, saturation and lightness.
216 // HSL values are all in range [0..1], alpha will be set to 255.
217 NVGcolor nvgHSL(float h, float s, float l);
218
219 // Returns color value specified by hue, saturation and lightness and alpha.
220 // HSL values are all in range [0..1], alpha in range [0..255]
221 NVGcolor nvgHSLA(float h, float s, float l, unsigned char a);
222
223 //
224 // State Handling
225 //
226 // NanoVG contains state which represents how paths will be rendered.
227 // The state contains transform, fill and stroke styles, text and font styles,
228 // and scissor clipping.
229
230 // Pushes and saves the current render state into a state stack.
231 // A matching nvgRestore() must be used to restore the state.
232 void nvgSave(NVGcontext* ctx);
233
234 // Pops and restores current render state.
235 void nvgRestore(NVGcontext* ctx);
236
237 // Resets current render state to default values. Does not affect the render state stack.
238 void nvgReset(NVGcontext* ctx);
239
240 //
241 // Render styles
242 //
243 // Fill and stroke render style can be either a solid color or a paint which is a gradient or a pattern.
244 // Solid color is simply defined as a color value, different kinds of paints can be created
245 // using nvgLinearGradient(), nvgBoxGradient(), nvgRadialGradient() and nvgImagePattern().
246 //
247 // Current render style can be saved and restored using nvgSave() and nvgRestore().
248
249 // Sets whether to draw antialias for nvgStroke() and nvgFill(). It's enabled by default.
250 void nvgShapeAntiAlias(NVGcontext* ctx, int enabled);
251
252 // Sets current stroke style to a solid color.
253 void nvgStrokeColor(NVGcontext* ctx, NVGcolor color);
254
255 // Sets current stroke style to a paint, which can be a one of the gradients or a pattern.
256 void nvgStrokePaint(NVGcontext* ctx, NVGpaint paint);
257
258 // Sets current fill style to a solid color.
259 void nvgFillColor(NVGcontext* ctx, NVGcolor color);
260
261 // Sets current fill style to a paint, which can be a one of the gradients or a pattern.
262 void nvgFillPaint(NVGcontext* ctx, NVGpaint paint);
263
264 // Sets the miter limit of the stroke style.
265 // Miter limit controls when a sharp corner is beveled.
266 void nvgMiterLimit(NVGcontext* ctx, float limit);
267
268 // Sets the stroke width of the stroke style.
269 void nvgStrokeWidth(NVGcontext* ctx, float size);
270
271 // Sets how the end of the line (cap) is drawn,
272 // Can be one of: NVG_BUTT (default), NVG_ROUND, NVG_SQUARE.
273 void nvgLineCap(NVGcontext* ctx, int cap);
274
275 // Sets how sharp path corners are drawn.
276 // Can be one of NVG_MITER (default), NVG_ROUND, NVG_BEVEL.
277 void nvgLineJoin(NVGcontext* ctx, int join);
278
279 // Sets the transparency applied to all rendered shapes.
280 // Already transparent paths will get proportionally more transparent as well.
281 void nvgGlobalAlpha(NVGcontext* ctx, float alpha);
282 void nvgGlobalTint(NVGcontext* ctx, NVGcolor tint);
283 NVGcolor nvgGetGlobalTint(NVGcontext* ctx);
284 void nvgAlpha(NVGcontext* ctx, float alpha);
285 void nvgTint(NVGcontext* ctx, NVGcolor tint);
286
287 //
288 // Transforms
289 //
290 // The paths, gradients, patterns and scissor region are transformed by an transformation
291 // matrix at the time when they are passed to the API.
292 // The current transformation matrix is a affine matrix:
293 // [sx kx tx]
294 // [ky sy ty]
295 // [ 0 0 1]
296 // Where: sx,sy define scaling, kx,ky skewing, and tx,ty translation.
297 // The last row is assumed to be 0,0,1 and is not stored.
298 //
299 // Apart from nvgResetTransform(), each transformation function first creates
300 // specific transformation matrix and pre-multiplies the current transformation by it.
301 //
302 // Current coordinate system (transformation) can be saved and restored using nvgSave() and nvgRestore().
303
304 // Resets current transform to a identity matrix.
305 void nvgResetTransform(NVGcontext* ctx);
306
307 // Premultiplies current coordinate system by specified matrix.
308 // The parameters are interpreted as matrix as follows:
309 // [a c e]
310 // [b d f]
311 // [0 0 1]
312 void nvgTransform(NVGcontext* ctx, float a, float b, float c, float d, float e, float f);
313
314 // Translates current coordinate system.
315 void nvgTranslate(NVGcontext* ctx, float x, float y);
316
317 // Rotates current coordinate system. Angle is specified in radians.
318 void nvgRotate(NVGcontext* ctx, float angle);
319
320 // Skews the current coordinate system along X axis. Angle is specified in radians.
321 void nvgSkewX(NVGcontext* ctx, float angle);
322
323 // Skews the current coordinate system along Y axis. Angle is specified in radians.
324 void nvgSkewY(NVGcontext* ctx, float angle);
325
326 // Scales the current coordinate system.
327 void nvgScale(NVGcontext* ctx, float x, float y);
328
329 // Stores the top part (a-f) of the current transformation matrix in to the specified buffer.
330 // [a c e]
331 // [b d f]
332 // [0 0 1]
333 // There should be space for 6 floats in the return buffer for the values a-f.
334 void nvgCurrentTransform(NVGcontext* ctx, float* xform);
335
336
337 // The following functions can be used to make calculations on 2x3 transformation matrices.
338 // A 2x3 matrix is represented as float[6].
339
340 // Sets the transform to identity matrix.
341 void nvgTransformIdentity(float* dst);
342
343 // Sets the transform to translation matrix matrix.
344 void nvgTransformTranslate(float* dst, float tx, float ty);
345
346 // Sets the transform to scale matrix.
347 void nvgTransformScale(float* dst, float sx, float sy);
348
349 // Sets the transform to rotate matrix. Angle is specified in radians.
350 void nvgTransformRotate(float* dst, float a);
351
352 // Sets the transform to skew-x matrix. Angle is specified in radians.
353 void nvgTransformSkewX(float* dst, float a);
354
355 // Sets the transform to skew-y matrix. Angle is specified in radians.
356 void nvgTransformSkewY(float* dst, float a);
357
358 // Sets the transform to the result of multiplication of two transforms, of A = A*B.
359 void nvgTransformMultiply(float* dst, const float* src);
360
361 // Sets the transform to the result of multiplication of two transforms, of A = B*A.
362 void nvgTransformPremultiply(float* dst, const float* src);
363
364 // Sets the destination to inverse of specified transform.
365 // Returns 1 if the inverse could be calculated, else 0.
366 int nvgTransformInverse(float* dst, const float* src);
367
368 // Transform a point by given transform.
369 void nvgTransformPoint(float* dstx, float* dsty, const float* xform, float srcx, float srcy);
370
371 // Converts degrees to radians and vice versa.
372 float nvgDegToRad(float deg);
373 float nvgRadToDeg(float rad);
374
375 //
376 // Images
377 //
378 // NanoVG allows you to load jpg, png, psd, tga, pic and gif files to be used for rendering.
379 // In addition you can upload your own image. The image loading is provided by stb_image.
380 // The parameter imageFlags is combination of flags defined in NVGimageFlags.
381
382 // Creates image by loading it from the disk from specified file name.
383 // Returns handle to the image.
384 int nvgCreateImage(NVGcontext* ctx, const char* filename, int imageFlags);
385
386 // Creates image by loading it from the specified chunk of memory.
387 // Returns handle to the image.
388 int nvgCreateImageMem(NVGcontext* ctx, int imageFlags, const unsigned char* data, int ndata);
389
390 // Creates image from specified image data and texture format.
391 // Returns handle to the image.
392 int nvgCreateImageRaw(NVGcontext* ctx, int w, int h, int imageFlags, enum NVGtexture format, const unsigned char* data);
393
394 // Creates image from specified image data.
395 // Returns handle to the image.
396 int nvgCreateImageRGBA(NVGcontext* ctx, int w, int h, int imageFlags, const unsigned char* data);
397
398 // Updates image data specified by image handle.
399 void nvgUpdateImage(NVGcontext* ctx, int image, const unsigned char* data);
400
401 // Returns the dimensions of a created image.
402 void nvgImageSize(NVGcontext* ctx, int image, int* w, int* h);
403
404 // Deletes created image.
405 void nvgDeleteImage(NVGcontext* ctx, int image);
406
407 //
408 // Paints
409 //
410 // NanoVG supports four types of paints: linear gradient, box gradient, radial gradient and image pattern.
411 // These can be used as paints for strokes and fills.
412
413 // Creates and returns a linear gradient. Parameters (sx,sy)-(ex,ey) specify the start and end coordinates
414 // of the linear gradient, icol specifies the start color and ocol the end color.
415 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
416 NVGpaint nvgLinearGradient(NVGcontext* ctx, float sx, float sy, float ex, float ey,
417 NVGcolor icol, NVGcolor ocol);
418
419 // Creates and returns a box gradient. Box gradient is a feathered rounded rectangle, it is useful for rendering
420 // drop shadows or highlights for boxes. Parameters (x,y) define the top-left corner of the rectangle,
421 // (w,h) define the size of the rectangle, r defines the corner radius, and f feather. Feather defines how blurry
422 // the border of the rectangle is. Parameter icol specifies the inner color and ocol the outer color of the gradient.
423 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
424 NVGpaint nvgBoxGradient(NVGcontext* ctx, float x, float y, float w, float h,
425 float r, float f, NVGcolor icol, NVGcolor ocol);
426
427 // Creates and returns a radial gradient. Parameters (cx,cy) specify the center, inr and outr specify
428 // the inner and outer radius of the gradient, icol specifies the start color and ocol the end color.
429 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
430 NVGpaint nvgRadialGradient(NVGcontext* ctx, float cx, float cy, float inr, float outr,
431 NVGcolor icol, NVGcolor ocol);
432
433 // Creates and returns an image pattern. Parameters (ox,oy) specify the left-top location of the image pattern,
434 // (ex,ey) the size of one image, angle rotation around the top-left corner, image is handle to the image to render.
435 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
436 NVGpaint nvgImagePattern(NVGcontext* ctx, float ox, float oy, float ex, float ey,
437 float angle, int image, float alpha);
438
439 //
440 // Scissoring
441 //
442 // Scissoring allows you to clip the rendering into a rectangle. This is useful for various
443 // user interface cases like rendering a text edit or a timeline.
444
445 // Sets the current scissor rectangle.
446 // The scissor rectangle is transformed by the current transform.
447 void nvgScissor(NVGcontext* ctx, float x, float y, float w, float h);
448
449 // Intersects current scissor rectangle with the specified rectangle.
450 // The scissor rectangle is transformed by the current transform.
451 // Note: in case the rotation of previous scissor rect differs from
452 // the current one, the intersection will be done between the specified
453 // rectangle and the previous scissor rectangle transformed in the current
454 // transform space. The resulting shape is always rectangle.
455 void nvgIntersectScissor(NVGcontext* ctx, float x, float y, float w, float h);
456
457 // Reset and disables scissoring.
458 void nvgResetScissor(NVGcontext* ctx);
459
460 //
461 // Paths
462 //
463 // Drawing a new shape starts with nvgBeginPath(), it clears all the currently defined paths.
464 // Then you define one or more paths and sub-paths which describe the shape. The are functions
465 // to draw common shapes like rectangles and circles, and lower level step-by-step functions,
466 // which allow to define a path curve by curve.
467 //
468 // NanoVG uses even-odd fill rule to draw the shapes. Solid shapes should have counter clockwise
469 // winding and holes should have counter clockwise order. To specify winding of a path you can
470 // call nvgPathWinding(). This is useful especially for the common shapes, which are drawn CCW.
471 //
472 // Finally you can fill the path using current fill style by calling nvgFill(), and stroke it
473 // with current stroke style by calling nvgStroke().
474 //
475 // The curve segments and sub-paths are transformed by the current transform.
476
477 // Clears the current path and sub-paths.
478 void nvgBeginPath(NVGcontext* ctx);
479
480 // Starts new sub-path with specified point as first point.
481 void nvgMoveTo(NVGcontext* ctx, float x, float y);
482
483 // Adds line segment from the last point in the path to the specified point.
484 void nvgLineTo(NVGcontext* ctx, float x, float y);
485
486 // Adds cubic bezier segment from last point in the path via two control points to the specified point.
487 void nvgBezierTo(NVGcontext* ctx, float c1x, float c1y, float c2x, float c2y, float x, float y);
488
489 // Adds quadratic bezier segment from last point in the path via a control point to the specified point.
490 void nvgQuadTo(NVGcontext* ctx, float cx, float cy, float x, float y);
491
492 // Adds an arc segment at the corner defined by the last path point, and two specified points.
493 void nvgArcTo(NVGcontext* ctx, float x1, float y1, float x2, float y2, float radius);
494
495 // Closes current sub-path with a line segment.
496 void nvgClosePath(NVGcontext* ctx);
497
498 // Sets the current sub-path winding, see NVGwinding and NVGsolidity.
499 void nvgPathWinding(NVGcontext* ctx, int dir);
500
501 // Creates new circle arc shaped sub-path. The arc center is at cx,cy, the arc radius is r,
502 // and the arc is drawn from angle a0 to a1, and swept in direction dir (NVG_CCW, or NVG_CW).
503 // Angles are specified in radians.
504 void nvgArc(NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir);
505
506 // Creates new rectangle shaped sub-path.
507 void nvgRect(NVGcontext* ctx, float x, float y, float w, float h);
508
509 // Creates new rounded rectangle shaped sub-path.
510 void nvgRoundedRect(NVGcontext* ctx, float x, float y, float w, float h, float r);
511
512 // Creates new rounded rectangle shaped sub-path with varying radii for each corner.
513 void nvgRoundedRectVarying(NVGcontext* ctx, float x, float y, float w, float h, float radTopLeft, float radTopRight, float radBottomRight, float radBottomLeft);
514
515 // Creates new ellipse shaped sub-path.
516 void nvgEllipse(NVGcontext* ctx, float cx, float cy, float rx, float ry);
517
518 // Creates new circle shaped sub-path.
519 void nvgCircle(NVGcontext* ctx, float cx, float cy, float r);
520
521 // Fills the current path with current fill style.
522 void nvgFill(NVGcontext* ctx);
523
524 // Fills the current path with current stroke style.
525 void nvgStroke(NVGcontext* ctx);
526
527
528 //
529 // Text
530 //
531 // NanoVG allows you to load .ttf files and use the font to render text.
532 //
533 // The appearance of the text can be defined by setting the current text style
534 // and by specifying the fill color. Common text and font settings such as
535 // font size, letter spacing and text align are supported. Font blur allows you
536 // to create simple text effects such as drop shadows.
537 //
538 // At render time the font face can be set based on the font handles or name.
539 //
540 // Font measure functions return values in local space, the calculations are
541 // carried in the same resolution as the final rendering. This is done because
542 // the text glyph positions are snapped to the nearest pixels sharp rendering.
543 //
544 // The local space means that values are not rotated or scale as per the current
545 // transformation. For example if you set font size to 12, which would mean that
546 // line height is 16, then regardless of the current scaling and rotation, the
547 // returned line height is always 16. Some measures may vary because of the scaling
548 // since aforementioned pixel snapping.
549 //
550 // While this may sound a little odd, the setup allows you to always render the
551 // same way regardless of scaling. I.e. following works regardless of scaling:
552 //
553 // const char* txt = "Text me up.";
554 // nvgTextBounds(vg, x,y, txt, NULL, bounds);
555 // nvgBeginPath(vg);
556 // nvgRoundedRect(vg, bounds[0],bounds[1], bounds[2]-bounds[0], bounds[3]-bounds[1]);
557 // nvgFill(vg);
558 //
559 // Note: currently only solid color fill is supported for text.
560
561 // Creates font by loading it from the disk from specified file name.
562 // Returns handle to the font.
563 int nvgCreateFont(NVGcontext* ctx, const char* name, const char* filename);
564
565 // fontIndex specifies which font face to load from a .ttf/.ttc file.
566 int nvgCreateFontAtIndex(NVGcontext* ctx, const char* name, const char* filename, const int fontIndex);
567
568 // Creates font by loading it from the specified memory chunk.
569 // Returns handle to the font.
570 int nvgCreateFontMem(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData);
571
572 // fontIndex specifies which font face to load from a .ttf/.ttc file.
573 int nvgCreateFontMemAtIndex(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData, const int fontIndex);
574
575 // Finds a loaded font of specified name, and returns handle to it, or -1 if the font is not found.
576 int nvgFindFont(NVGcontext* ctx, const char* name);
577
578 // Adds a fallback font by handle.
579 int nvgAddFallbackFontId(NVGcontext* ctx, int baseFont, int fallbackFont);
580
581 // Adds a fallback font by name.
582 int nvgAddFallbackFont(NVGcontext* ctx, const char* baseFont, const char* fallbackFont);
583
584 // Resets fallback fonts by handle.
585 void nvgResetFallbackFontsId(NVGcontext* ctx, int baseFont);
586
587 // Resets fallback fonts by name.
588 void nvgResetFallbackFonts(NVGcontext* ctx, const char* baseFont);
589
590 // Sets the font size of current text style.
591 void nvgFontSize(NVGcontext* ctx, float size);
592
593 // Sets the blur of current text style.
594 void nvgFontBlur(NVGcontext* ctx, float blur);
595
596 // Sets the letter spacing of current text style.
597 void nvgTextLetterSpacing(NVGcontext* ctx, float spacing);
598
599 // Sets the proportional line height of current text style. The line height is specified as multiple of font size.
600 void nvgTextLineHeight(NVGcontext* ctx, float lineHeight);
601
602 // Sets the text align of current text style, see NVGalign for options.
603 void nvgTextAlign(NVGcontext* ctx, int align);
604
605 // Sets the font face based on specified id of current text style.
606 void nvgFontFaceId(NVGcontext* ctx, int font);
607
608 // Sets the font face based on specified name of current text style.
609 void nvgFontFace(NVGcontext* ctx, const char* font);
610
611 // Draws text string at specified location. If end is specified only the sub-string up to the end is drawn.
612 float nvgText(NVGcontext* ctx, float x, float y, const char* string, const char* end);
613
614 // Draws multi-line text string at specified location wrapped at the specified width. If end is specified only the sub-string up to the end is drawn.
615 // White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered.
616 // Words longer than the max width are slit at nearest character (i.e. no hyphenation).
617 void nvgTextBox(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end);
618
619 // Measures the specified text string. Parameter bounds should be a pointer to float[4],
620 // if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax]
621 // Returns the horizontal advance of the measured text (i.e. where the next character should drawn).
622 // Measured values are returned in local coordinate space.
623 float nvgTextBounds(NVGcontext* ctx, float x, float y, const char* string, const char* end, float* bounds);
624
625 // Measures the specified multi-text string. Parameter bounds should be a pointer to float[4],
626 // if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax]
627 // Measured values are returned in local coordinate space.
628 void nvgTextBoxBounds(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds);
629
630 // Calculates the glyph x positions of the specified text. If end is specified only the sub-string will be used.
631 // Measured values are returned in local coordinate space.
632 int nvgTextGlyphPositions(NVGcontext* ctx, float x, float y, const char* string, const char* end, NVGglyphPosition* positions, int maxPositions);
633
634 // Returns the vertical metrics based on the current text style.
635 // Measured values are returned in local coordinate space.
636 void nvgTextMetrics(NVGcontext* ctx, float* ascender, float* descender, float* lineh);
637
638 // Breaks the specified text into lines. If end is specified only the sub-string will be used.
639 // White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered.
640 // Words longer than the max width are slit at nearest character (i.e. no hyphenation).
641 int nvgTextBreakLines(NVGcontext* ctx, const char* string, const char* end, float breakRowWidth, NVGtextRow* rows, int maxRows);
642
643 //
644 // Internal Render API
645 //
646 struct NVGscissor {
647 float xform[6];
648 float extent[2];
649 };
650 typedef struct NVGscissor NVGscissor;
651
652 struct NVGvertex {
653 float x,y,u,v;
654 };
655 typedef struct NVGvertex NVGvertex;
656
657 struct NVGpath {
658 int first;
659 int count;
660 unsigned char closed;
661 int nbevel;
662 NVGvertex* fill;
663 int nfill;
664 NVGvertex* stroke;
665 int nstroke;
666 int winding;
667 int convex;
668 };
669 typedef struct NVGpath NVGpath;
670
671 struct NVGparams {
672 void* userPtr;
673 int edgeAntiAlias;
674 int (*renderCreate)(void* uptr, void* otherUptr);
675 int (*renderCreateTexture)(void* uptr, int type, int w, int h, int imageFlags, const unsigned char* data);
676 int (*renderDeleteTexture)(void* uptr, int image);
677 int (*renderUpdateTexture)(void* uptr, int image, int x, int y, int w, int h, const unsigned char* data);
678 int (*renderGetTextureSize)(void* uptr, int image, int* w, int* h);
679 void (*renderViewport)(void* uptr, float width, float height, float devicePixelRatio);
680 void (*renderCancel)(void* uptr);
681 void (*renderFlush)(void* uptr);
682 void (*renderFill)(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, float fringe, const float* bounds, const NVGpath* paths, int npaths);
683 void (*renderStroke)(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, float fringe, float strokeWidth, const NVGpath* paths, int npaths);
684 void (*renderTriangles)(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, const NVGvertex* verts, int nverts, float fringe);
685 void (*renderDelete)(void* uptr);
686 };
687 typedef struct NVGparams NVGparams;
688
689 // Constructor and destructor, called by the render back-end.
690 NVGcontext* nvgCreateInternal(NVGparams* params, NVGcontext* other);
691 void nvgDeleteInternal(NVGcontext* ctx);
692
693 NVGparams* nvgInternalParams(NVGcontext* ctx);
694
695 // Debug function to dump cached path data.
696 void nvgDebugDumpPathCache(NVGcontext* ctx);
697
698 #ifdef _MSC_VER
699 #pragma warning(pop)
700 #endif
701
702 #define NVG_NOTUSED(v) for (;;) { (void)(1 ? (void)0 : ( (void)(v) ) ); break; }
703
704 #ifdef __cplusplus
705 }
706 #endif
707
708 #endif // NANOVG_H